
Mass Cascades and Anomalous Scaling in Cluster-Cluster Aggregation

Aerosols, emulsions and gels are a class of bi-
nary mixtures in which particles of one phase are
dispersed in a continuous matrix of another. Every-
day examples include suspensions of particulates in
air which form smog, emulsions of essential coffee
oils in water creating expresso or cheese - gels of
water and oils dispersed in a solid milk-protein ma-
trix. These mixtures are important in many branches
of science and engineering from atmospheric science
to organic chemistry to astrophysics. They exhibit
a variety of interesting physical phenomena. These
include flocculation (an instability of an emulsion
which leads to the dispersed phase forming clusters
and eventually separating out), gelation (the emer-
gence of a macroscopically connected cluster of the
dispersed phase of an emulsion, usually causing sub-
stantial changes in the material properties of the mix-
ture) and phase separation or creaming (spontaneous
spatial separation of the two phases). In studying
such phenomena, it is important to take into account
transport of the dispersed particles within the contin-
uous phase and the interactions between them.

To create a simple stochastic model of such phe-
nomena, imagine a cloud of initially monodisperse
(uniformly sized) particles which move by diffusion
with some diffusion constant,D. When two parti-
cles of massm1 andm2 happen to meet, they stick
together with some with some probability, given by
a rate,λ(m1,m2), to form a new particle of mass
m1 + m2. Obviously the aggregation of particles
means that an initially monodisperse mixture will
not remain so. At later times, the mixture is char-
acterised by a non-trivial mass distribution,Nm(t),
which gives the average density of particles of mass
m. It evolves as a function of time. One can imagine
intuitively that, if light particles are injected into the
mixture at a constant rate, the system may approach
a statistically steady state where the addition of light
particles is balanced by the creation of heavier par-
ticles by aggregation. More careful analysis shows
that this is indeed the case. Such a model of cluster
aggregation, in the presence of a source of light par-
ticles, produces a stationary state which is not unlike
the stationary state of a turbulent system. It exhibits a
mass cascade which transports mass from small clus-

ters to large and is characterised by a constant flux of
mass through all cluster sizes. In practice, to attain
a true stationary state, one must add a sink which re-
moves clusters larger than some large mass cut-off.
The small mass physics is, however, insensitive to
what ultimately happens to the largest clusters.

A mean field theory determiningNm(t) was de-
rived by Smoluchowski in 1917. In Smoluchowski’s
theory,Nm(t) is determined by the kinetic equation:

∂tNm(t) =
Z m

0
dm1λ(m1,m−m1)Nm1(t)Nm−m1(t) (1)

−2Nm(t)
Z ∞

0
dm1λ(m,m1)Nm1(t)+ J δm,1,

where the integral terms describe aggregation and the
last term injects particles of mass 1 at a rateJ. This
equation goes some way to describing the physics of
aggregation. ForJ = 0, it has decaying solutions de-
scribing the generation of heavier clusters by aggre-
gation. For finiteJ, it produces a stationary solution
at large times describing a mass cascade. It even pro-
vides an elemenary model of the gelation transition
for appropriate choice of the kernel,λ(m1,m2). It’s
main weakness lies in the fact that, since it is a mean
field theory, it ignores correlations between particles.
Like in many systems in statistical physics, in low
enough dimensions, such correlations become strong
and the Smoluchowski theory fails. The critical di-
mension in this case is two. Understanding the statis-
tics of the model in dimensions less than or equal to
two is a non-trivial problem, which we now address.

From now on, we consider the simplest possible
case : the aggregation kernel is a constant, indepen-
dent of mass:λ(m1,m2) = λ. In this case, the mean
field solution for the stationary mass density is

Nm = c1

√

J
λ

m−
3
2 . (2)

This is correct ford > 2. Ford ≤ 2 we expect it to
be modified by diffusive fluctuations. Using Doi’s
method, a fairly standard approach for deriving con-
tinuum descriptions of stochastic particle systems,
it is possible to convert the master equation for the
model into a quantum field theory which can then be
analysed using powerful methods of statistical field
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Figure 1: Scaling exponents,γn, as a function ofn
from Monte Carlo simulations.

theory. The coupling constant for the theory is the
aggregation rate,λ. When one performs an expan-
sion of the average particle density in powers ofλ
one finds that the first correction to the mean field
answer is divergent ford ≤ 2 necessitating a resum-
mation of the expansion. This resummation can be
achieved using dynamical renormalisation group, or,
due to a simple structure inherited from the fact that
the kernel is a constant, may be carried out explicitly.
It turns out that all divergences in the expansion for
the average density are eliminated by renormalisa-
tion of λ resulting in the following density ford < 2:

Nm = c2

(

J
D

)

m−
2d+2
d+2 . (3)

We now consider higher order correlation func-
tions of the density. It turns out that a natural ob-
ject to study isCn(m1 . . .mn) which is the probability
of finding n particles,m1 . . .mn, within a small vol-
ume of space. In particular, we would like to know
how these objects scale as the masses become large,
Cn(m)∼m−γn , as characterised by a set of exponents,
γn. If the stationary distribution is self-similar then
the n-point correlation function should be given by
thenth power of the density so thatγn = 2d+2

d+2 n. Oth-
erwise, the particle distribution exhibits a multifrac-
tal character. We immediately find that multifractal-
ity is unavoidable in this model. By an exact calcu-
lation, which is very closely related to the argument
which yields the 4/5-law for hydrodynamic turbu-
lence, one can show thatC2(m1,m2) ∼ m−3 in all di-
mensions. This is the mean-field answer. Physically,
it tells us that the average mass flux is insensitive to
fluctuations.

The Cn for n ≥ 3 cannot be calculated exactly.
However they can be calculated pertubatively. For

d ≤ 2 there are additional divergences in the pertur-
bative expansion of theCn about their mean field val-
ues. These come from non-factorization of certain
composite operators in the theory. Unlike the diver-
gences associated with coupling constant renormali-
sation, these cannot be resummed explicitly making
the renormalisation group approach essential. Theγn

are thus obtained as anε-expansion whereε = 2−d:

γn =
2d +2
d +2

n+
1
2

n(n−1)ε
d +2

+o(ε2). (4)

The nonlinear scaling withn confirms the multi-
fractality of the mass distribution. This expression
with ε = 1 is compared with Monte Carlo simula-
tions done ind = 1 in Fig. 1. The agreement is sur-
prisingly good. Given the approximations involved,
one is tempted to conjecture that the lowest orderε-
expansion is actually exact.

Physically, these multifractal exponents have the
following meaning. Given that theγn are greater than
the (linear) self-similar exponents, the probability of
finding n nearby heavy particles isdecreased with
respect to the self-similar prediction. This makes
sense, given that diffusive motions are recurrent for
d ≤ 2. Heavy particles which get close to each other
meet often, strongly enhancing the probability of ag-
gregation. This produces strong anti-correlation be-
tween particles which in turn causes the breakdown
of self-similarity reflected by Eq.(4). These results
may also be of interest in turbulence where the ori-
gin and quantification of multifractality remains an
open problem of considerable interest.
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